Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Formation mechanisms of Cu(In,Ga)Se2 solar cells prepared from electrodeposited precursors

Identifieur interne : 000C72 ( Main/Repository ); précédent : 000C71; suivant : 000C73

Formation mechanisms of Cu(In,Ga)Se2 solar cells prepared from electrodeposited precursors

Auteurs : RBID : Pascal:13-0229249

Descripteurs français

English descriptors

Abstract

The development of low cost industrial processes is one of the key issues to make Cu(In,Ga)Se2 based solar cells reach grid-parity. Such a process is found by using a two-step technology based on the sequential electrodeposition of a metallic precursor followed by a rapid annealing. Three types of metallic precursors (two-compound systems as copper-indium, copper-gallium and three-compound system as copper-indium- gallium) have been electrodeposited on a molybdenum sputtered soda lime glass and alloyed through a low annealing temperature. Then a selenium film has been evaporated and the stack has been annealed at high temperature in a rapid thermal processing furnace. A one-step heating profile has been used from room temperature to 550 °C in less than 1 min. Samples for which the heating was stopped after different annealing times have been characterized using several techniques: X-ray fluorescence spectrometry for elemental composition, X-ray diffraction and Raman spectroscopy for phase composition, scanning electron microscopy for structural analysis and glow discharge optical emission spectroscopy for diffusion study. Preferential formation reactions of the two-compound based metallic precursors have been studied and compared with the copper-indium- gallium metallic precursor used in a two step process. A gallium free system reacts faster than a gallium-based system and presents well-formed ternary compound after a standard selenization. However, the incorporation of gallium can be improved through a longer annealing time or a higher annealing temperature.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0229249

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Formation mechanisms of Cu(In,Ga)Se
<sub>2</sub>
solar cells prepared from electrodeposited precursors</title>
<author>
<name sortKey="Oliva, F" uniqKey="Oliva F">F. Oliva</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Nexcis Photovoltaic Technology, 190 Avenue Célestin Coq</s1>
<s2>13106 Rousset</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Rousset</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 880 Avenue de Mimet</s1>
<s2>13541 Gardanne</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Gardanne</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Broussillou, C" uniqKey="Broussillou C">C. Broussillou</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Nexcis Photovoltaic Technology, 190 Avenue Célestin Coq</s1>
<s2>13106 Rousset</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Rousset</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Annibaliano, M" uniqKey="Annibaliano M">M. Annibaliano</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Nexcis Photovoltaic Technology, 190 Avenue Célestin Coq</s1>
<s2>13106 Rousset</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Rousset</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Frederich, N" uniqKey="Frederich N">N. Frederich</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Nexcis Photovoltaic Technology, 190 Avenue Célestin Coq</s1>
<s2>13106 Rousset</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Rousset</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Grand, P P" uniqKey="Grand P">P. P. Grand</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Nexcis Photovoltaic Technology, 190 Avenue Célestin Coq</s1>
<s2>13106 Rousset</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Rousset</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Roussy, A" uniqKey="Roussy A">A. Roussy</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 880 Avenue de Mimet</s1>
<s2>13541 Gardanne</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Gardanne</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Collot, P" uniqKey="Collot P">P. Collot</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 880 Avenue de Mimet</s1>
<s2>13541 Gardanne</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Gardanne</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bodnar, S" uniqKey="Bodnar S">S. Bodnar</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Nexcis Photovoltaic Technology, 190 Avenue Célestin Coq</s1>
<s2>13106 Rousset</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Rousset</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0229249</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0229249 INIST</idno>
<idno type="RBID">Pascal:13-0229249</idno>
<idno type="wicri:Area/Main/Corpus">000B06</idno>
<idno type="wicri:Area/Main/Repository">000C72</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0040-6090</idno>
<title level="j" type="abbreviated">Thin solid films</title>
<title level="j" type="main">Thin solid films</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Annealing temperature</term>
<term>Chalcopyrite</term>
<term>Copper</term>
<term>Copper Indium Selenides Mixed</term>
<term>Copper selenides</term>
<term>Diffusion</term>
<term>Electrodeposited coatings</term>
<term>Electrodeposition</term>
<term>Formation mechanism</term>
<term>Gallium</term>
<term>Gallium compound</term>
<term>Gallium selenides</term>
<term>Glow discharge</term>
<term>Heat treatment</term>
<term>Indium</term>
<term>Phase composition</term>
<term>Precursor</term>
<term>Raman spectrometry</term>
<term>Rapid thermal processing</term>
<term>Scanning electron microscopy</term>
<term>Selenium</term>
<term>Soda-lime glasses</term>
<term>Solar cell</term>
<term>Sputter deposition</term>
<term>Structural analysis</term>
<term>Ternary compound</term>
<term>Thermal annealing</term>
<term>Thin film</term>
<term>X ray diffraction</term>
<term>X ray fluorescence</term>
<term>X ray spectrometry</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Mécanisme formation</term>
<term>Cellule solaire</term>
<term>Revêtement électrodéposé</term>
<term>Dépôt électrolytique</term>
<term>Précurseur</term>
<term>Recuit thermique</term>
<term>Indium</term>
<term>Composé du gallium</term>
<term>Dépôt pulvérisation</term>
<term>Température recuit</term>
<term>Sélénium</term>
<term>Couche mince</term>
<term>Traitement thermique rapide</term>
<term>Traitement thermique</term>
<term>Cuivre</term>
<term>Gallium</term>
<term>Verre sodocalcique</term>
<term>Séléniure de cuivre</term>
<term>Séléniure de gallium</term>
<term>Fluorescence RX</term>
<term>Spectrométrie RX</term>
<term>Diffraction RX</term>
<term>Spectrométrie Raman</term>
<term>Composition phase</term>
<term>Microscopie électronique balayage</term>
<term>Analyse structurale</term>
<term>Décharge luminescente</term>
<term>Diffusion(transport)</term>
<term>Composé ternaire</term>
<term>Chalcopyrite</term>
<term>Cuivre Indium Séléniure Mixte</term>
<term>In</term>
<term>Substrat Molybdène</term>
<term>CuGaSe2</term>
<term>CuInSe2</term>
<term>8460J</term>
<term>8115P</term>
<term>8115C</term>
<term>6855N</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Cuivre</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The development of low cost industrial processes is one of the key issues to make Cu(In,Ga)Se
<sub>2</sub>
based solar cells reach grid-parity. Such a process is found by using a two-step technology based on the sequential electrodeposition of a metallic precursor followed by a rapid annealing. Three types of metallic precursors (two-compound systems as copper-indium, copper-gallium and three-compound system as copper-indium- gallium) have been electrodeposited on a molybdenum sputtered soda lime glass and alloyed through a low annealing temperature. Then a selenium film has been evaporated and the stack has been annealed at high temperature in a rapid thermal processing furnace. A one-step heating profile has been used from room temperature to 550 °C in less than 1 min. Samples for which the heating was stopped after different annealing times have been characterized using several techniques: X-ray fluorescence spectrometry for elemental composition, X-ray diffraction and Raman spectroscopy for phase composition, scanning electron microscopy for structural analysis and glow discharge optical emission spectroscopy for diffusion study. Preferential formation reactions of the two-compound based metallic precursors have been studied and compared with the copper-indium- gallium metallic precursor used in a two step process. A gallium free system reacts faster than a gallium-based system and presents well-formed ternary compound after a standard selenization. However, the incorporation of gallium can be improved through a longer annealing time or a higher annealing temperature.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0040-6090</s0>
</fA01>
<fA02 i1="01">
<s0>THSFAP</s0>
</fA02>
<fA03 i2="1">
<s0>Thin solid films</s0>
</fA03>
<fA05>
<s2>535</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Formation mechanisms of Cu(In,Ga)Se
<sub>2</sub>
solar cells prepared from electrodeposited precursors</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>E-MRS 2012 Symposium B</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>OLIVA (F.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BROUSSILLOU (C.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ANNIBALIANO (M.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>FREDERICH (N.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>GRAND (P. P.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>ROUSSY (A.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>COLLOT (P.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>BODNAR (S.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>EDOFF (Marika)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>ROMEO (Alessandro)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>SCHEER (Roland)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>SHAFARMAN (William)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="05" i2="1">
<s1>KATAGIRI (Hirono)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Nexcis Photovoltaic Technology, 190 Avenue Célestin Coq</s1>
<s2>13106 Rousset</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 880 Avenue de Mimet</s1>
<s2>13541 Gardanne</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>European Materials Research Society (E-MRS)</s1>
<s2>Strasbourg</s2>
<s3>FRA</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s1>127-132</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13597</s2>
<s5>354000504170550280</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>11 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0229249</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Thin solid films</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The development of low cost industrial processes is one of the key issues to make Cu(In,Ga)Se
<sub>2</sub>
based solar cells reach grid-parity. Such a process is found by using a two-step technology based on the sequential electrodeposition of a metallic precursor followed by a rapid annealing. Three types of metallic precursors (two-compound systems as copper-indium, copper-gallium and three-compound system as copper-indium- gallium) have been electrodeposited on a molybdenum sputtered soda lime glass and alloyed through a low annealing temperature. Then a selenium film has been evaporated and the stack has been annealed at high temperature in a rapid thermal processing furnace. A one-step heating profile has been used from room temperature to 550 °C in less than 1 min. Samples for which the heating was stopped after different annealing times have been characterized using several techniques: X-ray fluorescence spectrometry for elemental composition, X-ray diffraction and Raman spectroscopy for phase composition, scanning electron microscopy for structural analysis and glow discharge optical emission spectroscopy for diffusion study. Preferential formation reactions of the two-compound based metallic precursors have been studied and compared with the copper-indium- gallium metallic precursor used in a two step process. A gallium free system reacts faster than a gallium-based system and presents well-formed ternary compound after a standard selenization. However, the incorporation of gallium can be improved through a longer annealing time or a higher annealing temperature.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A15P</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A15C</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B60H55N</s0>
</fC02>
<fC02 i1="05" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Mécanisme formation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Formation mechanism</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Mecanismo formacion</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Revêtement électrodéposé</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Electrodeposited coatings</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Dépôt électrolytique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Electrodeposition</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Depósito electrolítico</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Précurseur</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Precursor</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Precursor</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Recuit thermique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Thermal annealing</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Recocido térmico</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Indium</s0>
<s2>NC</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Indium</s0>
<s2>NC</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Indio</s0>
<s2>NC</s2>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Composé du gallium</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Gallium compound</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Galio compuesto</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Dépôt pulvérisation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Sputter deposition</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Température recuit</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Annealing temperature</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Temperatura recocido</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Sélénium</s0>
<s2>NC</s2>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Selenium</s0>
<s2>NC</s2>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Selenio</s0>
<s2>NC</s2>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Couche mince</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Thin film</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Capa fina</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Traitement thermique rapide</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Rapid thermal processing</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Traitement thermique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Heat treatment</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Tratamiento térmico</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Cuivre</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Copper</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Cobre</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Gallium</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Gallium</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Galio</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Verre sodocalcique</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Soda-lime glasses</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Séléniure de cuivre</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Copper selenides</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Séléniure de gallium</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Gallium selenides</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Fluorescence RX</s0>
<s5>29</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>X ray fluorescence</s0>
<s5>29</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Fluorescencia RX</s0>
<s5>29</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Spectrométrie RX</s0>
<s5>30</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>X ray spectrometry</s0>
<s5>30</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Espectrometría RX</s0>
<s5>30</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Diffraction RX</s0>
<s5>31</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>X ray diffraction</s0>
<s5>31</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Difracción RX</s0>
<s5>31</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Spectrométrie Raman</s0>
<s5>32</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Raman spectrometry</s0>
<s5>32</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Espectrometría Raman</s0>
<s5>32</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Composition phase</s0>
<s5>33</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Phase composition</s0>
<s5>33</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Composición fase</s0>
<s5>33</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Microscopie électronique balayage</s0>
<s5>34</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Scanning electron microscopy</s0>
<s5>34</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Microscopía electrónica barrido</s0>
<s5>34</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Analyse structurale</s0>
<s5>35</s5>
</fC03>
<fC03 i1="26" i2="X" l="ENG">
<s0>Structural analysis</s0>
<s5>35</s5>
</fC03>
<fC03 i1="26" i2="X" l="SPA">
<s0>Análisis estructural</s0>
<s5>35</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>Décharge luminescente</s0>
<s5>36</s5>
</fC03>
<fC03 i1="27" i2="X" l="ENG">
<s0>Glow discharge</s0>
<s5>36</s5>
</fC03>
<fC03 i1="27" i2="X" l="SPA">
<s0>Descarga luminiscente</s0>
<s5>36</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>Diffusion(transport)</s0>
<s5>37</s5>
</fC03>
<fC03 i1="28" i2="3" l="ENG">
<s0>Diffusion</s0>
<s5>37</s5>
</fC03>
<fC03 i1="29" i2="X" l="FRE">
<s0>Composé ternaire</s0>
<s5>38</s5>
</fC03>
<fC03 i1="29" i2="X" l="ENG">
<s0>Ternary compound</s0>
<s5>38</s5>
</fC03>
<fC03 i1="29" i2="X" l="SPA">
<s0>Compuesto ternario</s0>
<s5>38</s5>
</fC03>
<fC03 i1="30" i2="X" l="FRE">
<s0>Chalcopyrite</s0>
<s5>39</s5>
</fC03>
<fC03 i1="30" i2="X" l="ENG">
<s0>Chalcopyrite</s0>
<s5>39</s5>
</fC03>
<fC03 i1="30" i2="X" l="SPA">
<s0>Calcopirita</s0>
<s5>39</s5>
</fC03>
<fC03 i1="31" i2="X" l="FRE">
<s0>Cuivre Indium Séléniure Mixte</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>40</s5>
</fC03>
<fC03 i1="31" i2="X" l="ENG">
<s0>Copper Indium Selenides Mixed</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>40</s5>
</fC03>
<fC03 i1="31" i2="X" l="SPA">
<s0>Cobre Indio Seleniuro Mixto</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>40</s5>
</fC03>
<fC03 i1="32" i2="X" l="FRE">
<s0>In</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="33" i2="X" l="FRE">
<s0>Substrat Molybdène</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="34" i2="X" l="FRE">
<s0>CuGaSe2</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="35" i2="X" l="FRE">
<s0>CuInSe2</s0>
<s4>INC</s4>
<s5>49</s5>
</fC03>
<fC03 i1="36" i2="X" l="FRE">
<s0>8460J</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="37" i2="X" l="FRE">
<s0>8115P</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="38" i2="X" l="FRE">
<s0>8115C</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="39" i2="X" l="FRE">
<s0>6855N</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>210</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>E-MRS Spring Meeting 2012. Symposium B "Thin Film Chalcogenide Photovoltaic Materials"</s1>
<s3>Strasbourg FRA</s3>
<s4>2012-05-14</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C72 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000C72 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0229249
   |texte=   Formation mechanisms of Cu(In,Ga)Se2 solar cells prepared from electrodeposited precursors
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024